3t^2+24t+9=0

Simple and best practice solution for 3t^2+24t+9=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3t^2+24t+9=0 equation:



3t^2+24t+9=0
a = 3; b = 24; c = +9;
Δ = b2-4ac
Δ = 242-4·3·9
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-6\sqrt{13}}{2*3}=\frac{-24-6\sqrt{13}}{6} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+6\sqrt{13}}{2*3}=\frac{-24+6\sqrt{13}}{6} $

See similar equations:

| 1-3k=-5k | | -1(7x+6x-7(x+1))=-4x-6 | | Y=3x-35 | | 2/11(3+2x)=10 | | 40x^2-4x+8=0 | | 5(4u-6)+3u=4(5u-9) | | (5x+9/10)=(x/5) | | 4.9x^2-7x-160=0 | | 13=7-4x | | -10+5x=7x+4 | | 4(x+2)÷3=25 | | (5x+9/10)=x/5 | | 4.9x^-7x-160=0 | | 3^(2t+1)+3^(t+2)=10/3 | | 6=4v÷2 | | 4.25v-7.5v+5=1.5 | | (1511)x(0.75)11x(0.25)4= | | 7x-2=5x-20 | | 3(x-3)=8/14 | | 4(x-4=2(x+2) | | y=(.125)(9)-8 | | -3(6-x)=-60 | | 2((-3+-1a2)(8+-3a2))=0 | | x^2+(-8x)+7=0 | | 3^2-2•3+u=(3^3-3•8)(2)+u | | -4.9t^2-15t+50=0 | | .666x=x-5 | | -t/2=13 | | 4(x-4=2(x+2 | | -6(8+2r)=-108 | | -4.9^2-15t+50=0 | | 3/4-r(r-1/2)=r(3-r) |

Equations solver categories